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We introduce a quantitative measure of network bipartivity as a proportion of even to total number of closed
walks in the network. Spectral graph theory is used to quantify how close to bipartite a network is and the
extent to which individual nodes and edges contribute to the global network bipartivity. It is shown that the
bipartivity characterizes the network structure and can be related to the efficiency of semantic or communica-
tion networks, trophic interactions in food webs, construction principles in metabolic networks, or communities
in social networks.
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I. INTRODUCTION

The study of complex networks has become an important
area of multidisciplinary research involving physics, math-
ematics, biology, social sciences, informatics, and other the-
oretical and applied sciences. The importance of this field
resides in the existence of a unifying language to describe
disparate real-world systems that are of great relevance in
modern society, ranging from the Internet or powergrids to
metabolic or protein interaction networks �PINs� �1–6�. Re-
cently, “bipartivity” has been proposed as an important topo-
logical characteristic of complex networks �7�. A network
�graph� G= �V ,E� is called bipartite if its vertex set V can be
partitioned into two subsets V1 and V2 such that all edges
have one endpoint in V1 and the other in V2. There are nu-
merous natural systems that are modeled as bipartite net-
works, such as reaction networks or “two-mode” networks,
in which two disjointed sets of nodes are related by links
representing the relationship between the elements of both
classes �8–11�. For instance, they can represent authors that
cite �or are cited by� papers, people that belong to institu-
tions, cities that have certain services, or voting results of
delegates concerning certain proposals. Holme et al. �7�
pointed out several areas for the potential application of a
quantitative measure of bipartivity, such as network studies
of sexually transmitted diseases, trade networks of buyers
and sellers, “genealogical” networks of disease outbreak, and
food webs �7�. Just to give some examples of the relevance
of a measure of network bipartivity we will mention the
following scenarios. Let us consider the study of a sexually
transmitted disease. It is known that the transmission rates
for homosexual and heterosexual contacts differ �12�. Con-
sequently, the transmission of this disease will depend on
how bipartite the corresponding network is. In other words,
having an idea of the bipartivity of sexual networks, we will
have an idea on the rate of spreading of a sexually transmit-
ted disease.

Another scenario in which the analysis of network bipar-
tivity can be of great utility is for the study of information
and communication networks. In a dictionary, for instance,
all entries should be related in a self-referential way showing
a large transitivity between triples of words. In communica-
tion networks, like a network of airports or the Internet, the
network bipartivity indicates that two separate groups exist,
where direct communication is only possible between nodes
in the different groups. The lack of direct communication
between “members” of the same group is an indication of the
lack of efficiency of such networks. If we are considering,
for instance, a bipartite network of U.S. airports in which
airplanes can fly from the east to the west coast but no east-
east or west-west allowed, then it is obvious that we have to
fly from New York to San Francisco and from there to Miami
because no direct flight from New York to Miami can exist.
The ideal case coincides with the least bipartite network in
which each pair of airports are connected by a flight, i.e., a
complete graph. This is an exaggerated, but illustrative ex-
ample about the importance of bipartivity, for the design of
an efficient communication network as well as about the im-
portance of having effective ways of measuring bipartivity in
complex networks.

We introduce here a spectral measure of bipartivity for
complex networks that is easy to compute, changes mono-
tonically with changes in network bipartivity, and allows the
calculation of individual node contributions to global bipar-
tivity. We analyze the spectral measure of bipartivity by con-
sidering several real-world networks, which include informa-
tion, biological, social, and technological networks.

II. THEORETICAL METHODS

Our approach to define a measure of network bipartivity
is based on the concept of closed walks. A walk of length r
is a sequence of �not necessarily different� vertices
v1 ,v2 , ¯ ,vr ,vr+1 such that for each i=1,2 , ¯ ,r there is a
link from vi to vi+1. A closed walk �CW� is a walk in which
vr+1=v1. A CW is called odd �even� if r is odd �even�. A
cycle is a CW in which all vertices in v1 ,v2 , ¯ ,vr ,vr+1 are
different. The theoretical motivation of our measure of bipar-
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tivity arose from the following result, which follows straight-
forwardly from known results in graph theory �13�: A non-
trivial graph �without self-loops� is bipartite if and only if it
contains no odd closed walks.

Let G= �V ,E� be a network with N nodes and having ei-
genvalues of the adjacency matrix �= ��1 , ¯ ,�N� �14�. The
subgraph centralization measure has been defined as a
weighted sum of the so-called spectral moments of the adja-
cency matrix �l=� j=1

N �� j�l. It is obvious that �0=N, i.e., it is
equal to the number of nodes in the network, �1=0 for non-
weighted networks, and �l �l�0,1� represents the number
of CWs of length l in the network. Accordingly, the subgraph
centralization for a network G= �V ,E� is equal to �14�:

�SC� = SC�G� =
1

N
�
l=1

�
�l

l!
=

1

N
�
j=1

N

e�j . �1�

The subgraph centralization �SC� can be expressed as the
sum of two contributions, one coming from odd and the
other from even CWs

�SC� =
1

N
�
j=1

N

�cosh�� j� + sinh�� j�� = �SC�even + �SC�odd.

�2�

If G�V ,E� is bipartite, then �SC�odd=1/N �
j=1

N

sinh�� j�=0,

because there are no odd CWs in the network and, therefore,

�SC� = �SC�even =
1

N
�
j=1

N

cosh�� j� . �3�

Consequently, the proportion of even CWs to the total
number of CWs is a measure of the network bipartivity

��G� =
�SC�even

�SC�
=

�SC�even

�SC�even + �SC�odd
=

� j=1

N
cosh�� j�

� j=1

N
e�j

.

�4�

It is evident that ��G��1 and ��G�=1 if, and only if, G
is bipartite, i.e., �SC�odd=0. Furthermore, as 0� �SC�odd and
sinh�� j��cosh�� j�, ∀�i, then 1

2 	��G� and 1
2 	��G��1.

The lower bound is reached for the least possible bipartite
graph with N nodes, which is the complete graph KN. As the
eigenvalues of KN are N−1 and −1 �with multiplicity n−1�
�13�, then ��G�→ 1

2 when N→� in KN. This lower bound
coincides with that given by Holme et al. �7� in the N→�
limit for their measures.

Despite the fact that both measures coincide in the ex-
treme values, they show different values for the rest of net-
works. Consider, for instance, a process in which new edges
are successively added to a bicomplete graph KN1,N2, which
has two disjointed sets of nodes V1 and V2 of cardinality N1
and N2, respectively. We will obtain the least bipartite graph
KN, N=N1+N2, by joining together all of the N1 nodes of V1
and all of the N2 nodes of V2. The addition of one edge to V1
�V2� will introduce N2 �N1� triangles to the network. In the

case of star graphs K1,N2, the addition of one edge to V2
introduces only one triangle to each graph, which make the
graphs with larger N2 more bipartite because the proportion
of even to total CWs, ��G�, increases. In this case, ��G�
coincides with b1, which is one minus the proportion of frus-
trated to total number of edges in the network. It can be seen
that b1 drops dramatically in K3 �the triangle� despite it being
very close to bipartite, indicating that the aforementioned
proportion is the important aspect for bipartivity and not the
number of frustrated edges to be removed to make the graph
bipartite. Thus, both measures follow the same trend for
K1,N2 as shown in Fig. 1�a�. However, both measures give
different trends if we consider graphs of the type KN1,N2
�N1�1, N2�1�. In Fig. 1�b�, we illustrate this situation by
adding edges to the graph K2,3. Here the addition of one edge
to V2 produces two triangles, while its addition to V1 pro-
duces three. Thus, the numbers of frustrated and total edges
are the same, but the proportion of even to total CWs is not.
As a consequence, b1 gives the same value for these pairs of
graphs. However, ��G� shows that the graphs having the
frustrated edge joining pairs of nodes at V2 are more bipartite
than those in which the frustrated edge is joining nodes at V1.
This result can be straightforwardly generalized to any kind
of network.

A desired property for ��G� is that it changes monotoni-
cally as the bipartivity of the graph changes. Let G be a
noncomplete graph and let e be an edge of the complement
of G. Let G+e be the graph obtained by adding the edge
e to G. In this situation, there exist real and nonnegative
numbers a and b, such that SCeven�G+e�=SCeven�G�+a and
SCodd�G+e�=SCodd�G�+b. Notice that a is the contribution
of edge e to SCeven and b is the contribution of edge e to
SCodd. Thus, with the above notation, if b
a, then ��G�

��G+e�. That is, as a+b /2
a and SCeven�G�
SC�G� /2
then �a+b��SCeven�G�
a�SC�G�. The addition of
SCeven�G��SC�G� to both terms and further reordering gives
SCeven�G��SC�G�+a+b�
SC�G��SCeven�G�+a� and, conse-
quently,

��G� =
SCeven�G�

SC�G�



SCeven�G� + a

SC�G� + a + b
= ��G + e� , �5�

which proves the monotony of the change for the spectral
bipartivity measure as can be seen in Fig. 1�b�.

The contribution of node i to network bipartivity ��i� can
be obtained by using the subgraph centrality of node i �15� as
follows:

SC�i� = �
j=1

N

�v j�i��2e�j , �6�

where �v1 ,v2 , . . . ,vn� is an orthonormal basis of RN com-
posed by eigenvectors of the adjacency matrix associated
with the eigenvalues �1 ,�2 , . . . ,�N, and v j�i� is the ith com-
ponent of v j. Hence, ��i� is given by

��i� =
� j=1

N
�v j�i��2 cosh�� j�

� j=1

N
�v j�i��2e�j

. �7�
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On the other hand, we can make use of our finding about
the monotony of ��G� to calculate the contribution of an
edge e to the network bipartivity ��e�. Let e be an edge of
the network G and let G−e be the network obtained by
removing e from G. Then, ��e� is given by ��e�

=1− ���G−e�−��G�� �the formula 1− �¯� is used to make
these values follow the same trend as those of ��i�	. In Fig.
1�c�, we illustrate the values of ��i� and ��e� for the nodes
and links of the first two graphs of Fig. 1�b�.

III. SPECTRAL BIPARTIVITY IN REAL-WORLD
COMPLEX NETWORKS

A total of 17 complex networks were studied, including 2
semantic networks, one based on Roget’s Thesaurus of En-
glish �Roget� �16� and the other based on the Online Dictio-
nary of Library and Information Science �ODLIS� �17� �two
words are connected if one is used in the definition of the
other�; 4 social networks that include a scientific collabora-
tion network in the field of computational geometry �18�,
inmates in prison �19�, injecting drug users �IDUs� that have
shared a needle in the last six months �20�, and the friendship
network between members of a karate club �21�; 7 biological
networks including the protein-protein interaction network
�PIN� of yeast compiled by Bu et al. �22� on data obtained by
von Mering et al. �23�; the direct transcriptional regulation
between genes in yeast �24�, and 4 food webs representing
trophic relations in different ecosystems: Coachella Valley
�25�, Grassland �26�, Ythan Estuary �27�, and El Verde Rain-
forest �28�; 5 technological networks, one based on the air-
port transportation network in the U.S. in 1997 �29�, the
Internet at the autonomous systems �AS� level as from April
1998 �30�, and 3 electronic sequential logic circuits parsed
from the ISCAS89 benchmark set, where nodes represent
logic gates and flip flops �31�.

The results of calculations are given in Table I. There are
four networks in which the low values of ��G� are indicative
of the efficient construction of these networks. These are the
two semantic networks, the transportation network of U.S.
airports, and the Internet at AS. As we have previously re-
marked, in semantic networks, like Roget and ODLIS, all
individual entries must be bootstrapped from other entries in
a self-referential way �32�, which immediately precludes bi-
partivity from these semantic networks. In transportation or
communication networks, a significant degree of bipartivity
is translated into a low efficiency in traveling between the
nodes located in the same disjointed set, which makes the
network inefficient. However, bipartivity can also be a de-
sired property in technological networks, as demonstrated by
the high bipartivity observed for the three electronic circuits
studied.

The four social networks analyzed show very different
bipartivity values. While the karate club and prison networks
reveal certain bipartivity, the IDUs and the collaboration net-
work show values of ��G�=0.5. The bipartivity observed for
the Karate Club network can be rationalized by the fact that
there are two main disjointed hubs in the network: the club’s
instructor and the club’s president. The rest of the nodes,
which form the other set, show a low average degree �3.84�,
indicating that there is not a high number of links between
them. At the other extreme is the collaboration network,
which has a value of ��G�=0.5. This network consists of
clusters of fully connected nodes, formed by coauthors of a

FIG. 1. Some graphs used in the discussion of global and local
spectral bipartivity measures. �a� Graphs obtained by the addition of
one frustrated edge �dotted line� to stars K1,N2. Only one triangle is
introduced to each graph after the addition of the new links. Thus,
the proportion of even to total CWs �even+odd�, ��G�, increases as
N2 increases and the networks with larger N2 are more bipartite.
The proportion of frustrated to total number of edges decreases as
N2 increases and b1 follows the same trend that ��G�. �b� Values of
network bipartivity, b1 and ��G�, for the graphs produced by suc-
cessive addition of frustrated edges to K2,3. It is observed that ��G�
shows a monotonically decreasing trend from the bipartite graph to
the complete graph. b1 does not differentiate between pairs of
graphs having the same number of frustrated edges despite the fact
that they show different proportions of even to total number of
CWs. �c� Values of ��i� and ��e� for the first two graphs in �b�. The
lowest values of these measures indicate those nodes and/or links
which contribute more to the nonbipartivity of the graph. Despite
the fact that some links with values different from one are not
frustrated edges, their being removed reduces the number of odd
CWs, e.g., triangles, increasing the bipartivity of the network.
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particular paper, which are interconnected and make the net-
work nonbipartite.

Holme et al. �7� considered the study of food webs as a
potential area for the application of bipartivity measures.
This supposition is based on the idea that the simplest picture
of a food web can be represented as different “trophic” levels
where species in one level predate species located at the level
below, producing networks with a high degree of bipartivity.
This appears to be the case for Grassland and Stony stream,
both of which have a significant degree of bipartivity. Grass-
land represents a good example of a network where trophic
levels are responsible for the bipartivity observed. The
trophic relations observed are only interclasses and form an
almost bipartite graph �see Fig. 2�. The situation is quite
different for the other two food webs, which show a very low
degree of bipartivity as a consequence of their larger number
of trophic relations between species. Similar results ��

0.5� are obtained for other food webs, such as Little Rock,
Scotch Broom, and Ythan Estuary with parasites �data not
shown�. Therefore, we believe that bipartivity is not a gen-
eral characteristic of ecological systems despite the fact that
food webs with a pronounced degree of bipartivity can be
found as a consequence of the trophic relations between
classes.

The metabolic network of yeast is the most bipartite net-
work of all those studied here. This finding can be explained
by the construction of the network, which is based on two

sets of nodes—one representing regulating genes and the
other representing regulated genes—with connections be-
tween both sets. In contrast, the PIN of yeast shows a low
degree of bipartivity despite its low clustering, which indi-
cates that odd cycles larger than triangles play an important
role in the interactions between proteins in this organism.

The utility of the local bipartivity index ��i� lies in the
possibility of identifying those nodes and links that contrib-
ute significantly to the bipartivity in a network. Removing
them will significantly affect the bipartivity degree of the
whole network. For instance, removing the node with the
lowest contribution to ��i� in Grassland increases its bipar-
tivity from ��G�=0.734 to ��G�=0.794, and this example
can reach ��G�=0.863 by removing the three nodes with the
lowest contribution to ��i�. It is possible to find numerous
practical applications for the detection of node and/or link
bipartivity in real-world networks. For instance, this ap-
proach can be applied in the field of sexually transmitted
diseases, where nodes with different contributions to the net-
work bipartivity can play different roles in the transmission
of such diseases �12�.

IV. CONCLUSIONS

Network bipartivity is a topological characteristic that
cannot be accounted for by other structural measures, such as
clustering coefficients �see Table I�. On the other hand, the

TABLE I. Values of the spectral network bipartivity measure, ��G�, for complex networks of different
types and sizes. The number of nodes �N� and edges �E� are given along with clustering coefficients. The
correlation coefficients �R2� of the linear regression between bipartivity and clustering coefficients are also
given in order to show their linear independence.

Type Network N E ��G� C�1��G�a C�2��G�a

Information Roget 994 3640 0.529 0.162 0.134

ODLIS 2898 16376 0.500 0.351 0.056

Social Karate club 34 78 0.597 0.588 0.256

Prison 67 142 0.698 0.330 0.288

Drugs 616 2012 0.500 0.722 0.368

Geom 3621 9461 0.500 0.679 0.219

Biological Coachella 30 241 0.500 0.707 0.697

Grassland 75 113 0.743 0.497 0.174

Stony stream 112 830 0.815 0.076 0.020

El Verde 156 1439 0.500 0.231 0.232

Trans-yeast 662 1062 0.960 0.092 0.016

PIN-yeast 2224 6608 0.500 0.201 0.102

Technological USAir97 332 2126 0.500 0.749 0.396

Internet-1998 3522 6324 0.502 0.340 0.014

Electronic1 122 189 0.948 0.064 0.344

Electronic2 252 399 0.950 0.060 0.310

Electronic3 512 819 0.952 0.058 0.290

R2 0.450 0.100

aC�1��G� as defined by Watt and Strogatz and C�2��G� defined as three times the number of triangles divided
by the number of connected triples in the network �see �1� for definitions�.
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physical consequences of network bipartivity depend on the
particular network and processes which are studied and can-
not be generalized even for networks in the same fields.
While social networks of friendships are expected to be non-
bipartite due to the propensity for two of one’s friends to also
be friends of each other, in sexual networks bipartivity can
arise from homosexual contacts. A similar situation occurs in
food webs, where in some systems, the trophic relations be-
tween species in different trophic levels can introduce bipar-
tivity to the network—a situation that does not occur if the
species are in the same trophic level. The exception appears
to be communication and/or information systems, in which
the lack of bipartivity represents a measure of efficiency in
the network construction.

The study of complex networks has proved that in order
to understand the evolution of the processes taking place in
such systems, it is necessary to characterize the topological
properties of these networks. In this way, the clustering co-

efficient, assortativity coefficient, diameter, centrality mea-
sures, etc., are well-known network properties giving impor-
tant information about the architecture of complex networks.
Bipartivity measures, such as the one introduced by Holme
et al. �7� and the one presented here, are a new measurable
characteristic of networks, not accounted by any other net-
work parameter, which should be considered in the study of
complex systems represented by networks. Network bipartiv-
ity is of great importance for the study of sexual networks,
genealogical networks of a disease outbreak, food webs,
technological networks, and so forth.
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